

October 3-5, 2012 Boston Marriott Newton Newton, MA, USA

Modeling Magnetic Configurations for Improved Separations of Magnetic and Non-Magnetic Materials

Shahriar Khushrushahi, T. Alan Hatton, Markus Zahn Massachusetts Institute of Technology

Excerpt from the Proceedings of the 2012 COMSOL Conference in Boston

Motivation

http://www.telegraph.co.uk/finance/newsbysector/energy/oilandgas/9107069/BP-Gulf-of-Mexico-oil-spill-trial-postponed-at-the-eleventh-hour.html

Current Oil Spill Technologies - Booms

M. Fingas, Oil Spill Science and Technology: Elsevier, 2011. M. Fingas, The Basics of Oil Spill Cleanup, Second Edition: CRC Press, 2001.

Current Oil Spill Technologies - Skimmers

M. Fingas, Oil Spill Science and Technology: Elsevier, 2011. M. Fingas, The Basics of Oil Spill Cleanup, Second Edition: CRC Press, 2001.

Current Performance

	R	Recovery Rate (m3/hr) for given oil type*				
Skimmer Type	Diesel	Light Crude	Heavy Crude	Bunker C	Percent Oil**	
Oleophilic Skimmer	5					
small disc	0.4 to 1	0.2 to 2			80 to 95	
large disc		10 to 20	10 to 50		80 to 95	
brush	0.2 to 0.8	0.5 to 20	0.5 to 2	0.5 to 2	80 to 95	
large drum		10 to 30			80 to 95	
small drum	0.5 to 5	0.5 to 5			80 to 95	
large belt	1 to 5	1 to 20	3 to 20	3 to 10	75 to 95	
inverted belt		10 to 30			85 to 95	
rope		2 to 20	2 to 10			
Weir Skimmers small weir	0.2 to 10	0.5 to 5	2 to 20		20 to 80	
large weir		30 to 100	5 to 10	3 to 5	50 to 90	
advancing weir	1 to 10	5 to 30	5 to 25		30 to 70	
Elevating Skimmers paddle conveyer		1 to 10	1 to 20	1 to 5	10 to 40	
Submersion Skimme large	0.5 to 1	1 to 80	1 to 20		70 to 95	
Suction Skimmers small	0.3 to 1	0.3 to 2			3 to 10	
large trawl unit		2 to 40			20 to 90	
large vacuum unit		3 to 20	3 to 10		10 to 80	
Vortex/Centrifugal ! centrifugal unit	Skimmers 0.2 to 0.8	0.2 to 10			2 to 20	

water and thus the better the skimmers' performance

M. Fingas, Oil Spill Science and Technology: Elsevier, 2011. M. Fingas, The Basics of Oil Spill Cleanup, Second Edition: CRC Press, 2001.

Magnetic Separation Method

M. Zahn, et al., "Magnetic Colloid Petroleum Oil Spill Clean-up of Ocean Surface, Depth and Shore Regions," USA Patent Application No. #13/369,338, 2011.

Requirements

- 1) Methodology and materials used should be reusable and environmentally safe
- 2) Methodology should be a continuous, sustainable process that recycles materials
- 3) Methodology should be robust for marine environment
- 4) Methodology should use none/very little energy
- 5) Methodology should work when there is a variable amount of oil and water in the mixture

Magnetoviscous Effects in Ferrofluids – S. Odenbach

Governing Equations and Modules Used

$$F_m = \mu_0 (M \cdot \nabla) H$$

$$W_m = \int_0^B H \cdot dB$$

Magnetic Force Density (N/m³)

Magnetic Energy Density (J/m³)

$$F_m = -\nabla W_m$$

Magnetostatics (AC/DC Module) Laminar Two Phase Flow (CFD Module)

Think in terms of Magnetic Energy Density?

Two Attracting magnets

Magnetic Energy Surface Plot (with Height)

Magnetic Force Density Arrow Plot

Two Repelling magnets

Flange

magnets

Channel

Magnetic Energy Density Surface Plot (with Height)

Flows with no Magnet Edges

Using Edges

Magnetic Energy Density Surface Plot (with Height)

New Magnetic Separation Technique

