MULTIPHYSICS INERTIAL PARTICLE FOCUSING (IFP) MODEL VALIDATED FOR 3D MICRO-FLUIDIC GEOMETRIES

26.10.2023

Guido Spinola Durante Expert R&D Engineer

Plot Time 2 s

y z x

CSEM AT A GLANCE

We are a public-private, non-profit, Swiss technology innovation center.

We enable competitiveness through innovation by developing and transferring world-class technologies to industry.

INERTIAL PARTICLE FOCUSING (IFP) -PROBLEM STATEMENT

- Drag force (F_D) of the fluid flow is acting on particles
- Lift force (F_L) is pushing particles away from the walls and gently away from the position of maximum speed in the cross-section
- Secondary Dean flow with vortex formation in the cross-section can scatter particles around and facilitate mixing / migration of particles from inner to outer radius in a curve. It is characterized by Dean Number De=Re*sqrt(D/(2*Rc))
 This effect is included in the drag force (F_D) of the fluid flow on particles
- All the above effects combined will impact particle focusing

Why is it important ? Literature available (2019)

- https://www.nature.com/articles/s41598-019-52983-z
 - micro-cell sorting / Lab-on-chip / other
 - complex behavior Re up to 100
 - zig-zagging fluidic channels

When does IFP happen?

- Criteria 1: (r_p/Dh) > ~0.07 Note: (r_p/Dh) < 0.2-0.5 avoid channel obstruction
- Criteria 2:De < ~30
- Onset of IFP does not give any hint on timing, length, complexity of the focusing patter.
 FEM simulation is needed to support design

COMSOL MODEL AVAILABLE AND ITS LIMITATIONS

Segré-Silberberg effect of inertia-induced lateral

Particle focusing patterns

- The validated inertial particle focusing Comsol model is only in 2D
- The model is based on lift-force boundary condition implemented only for parallel walls in 2D/3D
- Gentle change in the cross-section along the fluid channel path cannot be modeled directly with implemented Comsol feature.
- Developed here: lift force based on wall-distance physics for constant/slowlyvariable channel width – (but missing high-order fluid speed correctionin lift-off forces in curves)

Comsol benchmark model:

Comsol tutorial model

GUI MODEL DEVELOPMENT AND VALIDATION STRATEGY

- Reproduce results of 2D GUI model with a 3D cylinder model / 3D trapezoidal pipe with increasing cross-section
- Check 1D/2D particle normalized average distance from axis in the output cross-section

COMSOL 2D model -> turned into GUI

3D GUI MODELS WITH CONSTANT/VARIABLE CROSS-SECTION

Added lift force feature coupled to wall interface physics: constant channel width

 3D cylinder model shows the typical expected ring focusing behavior

Added lift force feature coupled to wall interface physics: variable channel width

• 3D trapezoidal pipe with increasing cross-section shows reduced focusing with widening channel

3D SECONDARY (DEAN) FLOW IN CURVED MICRO-CHANNELS

- Dean flow with two recirculating vortex in the cross-section
- Effect of Dean flow is that particle release in a point at the inlet tend to rotate and spread in-plane.
- Higher order speed profile corrections to lift-forces in curves are not implemented yet

3_Flow_circular_channel_GU_V1_10um_6.48ml_min-1.exe

Non-purely symmetric flow (lift-force offset in curved channels)

Inputs/Outputs			Q Q Q • 🕀 🜵	• W M M I I • I • I • I • I • I • I • I • I
Channel width:	300	um	Time=0.2 s	Particle trajectories
Channel height:	300	um		1 Chiral flow, of particles
Radius of curvater - mid-line:	50	mm		
Angle:	180			
Calculated Length:	157.1	mm		
Fluid density:	1	g/(cm ³)		
Fluid dynamic viscosity:	0.001	Pas		
Particle density:	1	g/(cm3)		
Particle diameter:	10	um		
Particle release box width:	30	um		
Particle release box height:	30	um		
Particle release box x-center.	-15	um		
Particle release box v-center	0	um		
Hydraulic diameter:	0.3	mm		
Average Fluid speed at Inlet:	1.2	m/s		
Average Flow rate at Inlet:	6.48	ml/min		
Reynolds_number:	358.2			
Dean number	19.62			
Time to reach outlet:	0.1309	s		
Average Dean speed:	5.758	mm/s		
Maximum Dean Speed:	12.48	mm/s		
Revolution time (dean flow):	0.07815	5		
Time scale ratio (outlet/revolution):	1.675			
Number of particles:	2000			
Number of time steps:	300			
Simulation stop time:	0.2	5		
Mesh scale:	1			
			y Z	
Plot time:	0.2	5	×	

Flow circular channel GUI VI - SOLVED_Flow_circular_channel_GUI_V1_10um_6,48ml_min-1.exe

3D GUI MODEL BASED ON CAD MODEL

- Full 3D model with parametrized inlet length (round pipe) and straight channel outlet length
- Model is fully parametrized can be used for evaluating different particle size/density, fluid flow conditions, simulation times
- Data can be picked and visualized directly in the graphic windows
- All plots and data and the solved model itself can be saved.
- Model runs in ~2h on fast PC with 64GB ram

10ml/min

1ml/min

10ml/min

IFP TIMING VALIDATION

Comparison 2D/3D models:

- same maximum fluid speed -> keep same speed gradient on channel cross-section
- Initial release of particle from axis -> avoid particle non-uniform contribution to average distance to axis
- same axis-wall distance (equivalent radius)

IFP MULTIPHYSICS COUPLING WITH THERMAL MODEL

- Laminar, Thermal, Particle phyiscs coupled
- Thermal gradient or fluid/particle properties change with temperature can offset particle focusing
- The relevant effect is to change the focusing position at the outlet

relevant for IFP design – 19 minutes simulation time (0.3mm OD, L=60cm)

IFP MULTIPHYSICS COUPLING WITH THERMAL MODEL HEATED/NON-HEATED RESULTS COMPARISONS

CONCLUSIONS & NEXT STEPS

Conclusions

- Comsol modeling strategy and ist validation was implemented for 3D cylindrical and 3D rectangular crosssection geometries with variable channel width, starting from Comsol 2D IFP benchmark model.
- The implemented approach can be used to model inertial particle focusing with any particle size/density and generic channel cross-section to support advanced micro-fluidics design apps.
- Multi-physics coupling with thermal model is possible and simulation time is fast ~19min. (no thermal pulses)

Next steps

- Validation of the thermal model coupled with IFP model.
- The approach can be further refined to add higher order correction in lift-force due to curves
 → solve IFP problem for generic zig-zagging fluidic channels
- The GUI can be automated to import any generic model from CAD
 → requires dynamic definition of domains / inlet / outlet

•• CSECON FACING THE CHALLENGES OF OUR TIME