COMSOL simulations to develop and investigate the efficiency of a rocket-borne particle collector

Birte Klug

Altitude: ~85 km

Idea:

Sampling based, free-stream impactor
Collection of particles on the surface of a flow obstacle
Analysis of the particles

05 Jul 2020, Sulzheim

Rocket

Mathematical and numerical model of supersonic flows around the instument module

Supersonic flow regime

High Mach Number Flow, Laminar (hmnf) interface (

Compressible Navier Stokes equations

continuity equation

momentum equation

energy equation

internal energy equation ideal gas law

$$\begin{aligned} \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \ \vec{u}) &= 0 \\ \frac{\partial (\rho \vec{u})}{\partial t} + \nabla \cdot (\rho \vec{u} \vec{u}^T) &= \nabla \cdot \mathbf{T}_{\mathrm{f}} + \rho \vec{f} \\ \frac{\partial}{\partial t} (\rho E) + \nabla \cdot (\rho \vec{u} E) &= -\nabla \cdot k \nabla T + Q + \nabla \cdot (\mathbf{T}_{\mathrm{f}} \vec{u}) + \rho (\vec{f} \cdot \vec{u}) \\ \text{with } E &= e + \frac{u^2}{2}, \text{ and } e = c_v \ T, \rho &= \frac{p}{\mathrm{R}_{\mathrm{s}} \ T}, \\ \mathrm{T}_{\mathrm{f}} &= -p \mathbf{I} + \left[\mu \left(\nabla \vec{u} + (\nabla \vec{u})^T - \frac{2}{3} (\nabla \cdot \vec{u}) \mathbf{I} \right) \right] \end{aligned}$$

ρ: density \vec{u} : velocity *p*: pressure

f : body force *e*: internal energy

T: temperature R_s : specific gas constant *k*: thermal conductivity

Computing data of our COMSOL model

- Combination of tetrahedral, pyramidal, prismatic mesh elements
- ~4 million mesh elements
- Smallest element sizes: ~ 1 mm
- Time discretization by BDF (backward differentiation formula) method
- Cluster computing:
 - 6 nodes
 - 70 cores
 - 396 GB RAM (working storage)
- Solving time up to 20 days

Simulation based development of the particle collector

Development of the particle collector

Generated 3D mesh for simulations

Mesh refinement by the error indicator:

 $||\nabla \vec{u}||$

Generated 3D mesh for simulations

Generated 3D mesh for simulations

Mesh element size in m

Flow field around the payload tip

Velocity magnitude depicted on a cut plane perpendicular to the payload tip

Analyzing velocity magnitudes along cut lines

Analyzing velocity magnitudes along cut lines

Final location and design of the samplers

Flow field around the payload tip 0° angle of attack

Flow field around the payload tip at ±30° angle of attack

Mathematical and numerical model of particle simulations

Particle data

Estimation of particle forces

forces	mathematical expressions	estimated magnitude of forces / N
Brownian force	$ec{F}_{Brown} = ec{\zeta} \sqrt{rac{6 \pi \mu \ \mathbf{k}_{\mathrm{B}} \ T \ d_{p}}{\Delta t \ C_{c}}}$	$\sim 10^{-18}$
Stokes drag force	$\vec{F}_D = 3 \pi \mu_f d_p \vec{u}_r C_c^{-1}$	$\sim 10^{-18}$
Saffman force	$\vec{F}_S = 1.615 \ d_p^2 \ \vec{L}_f \ \sqrt{\rho_f \mu_f \frac{1}{ \nabla \times \vec{u}_r }}$	$\sim 10^{-22}$
gravitational force	$ec{F}_{G,tot} = m_p \; rac{\dot{ ho}_p - ho_f}{ ho_p} \; ec{g}$	$\sim 10^{-23}$
added mass force	$\vec{F}_{am} = m_f \ c_{am} \ \frac{\mathrm{d}(\vec{u}_f - \vec{v}_p)}{\mathrm{d}t}$	$\sim 10^{-25}$
pressure gradient force	$ec{F_p} = -rac{m_p}{ ho_p} abla p$	$\sim 10^{-28}$

Estimation of particle forces

forces	mathematical expressions	estimated magnitude of forces / N
Brownian force	$ec{F}_{Brown} = ec{\zeta} \sqrt{rac{6 \pi \mu \ \mathrm{k_B} \ T \ d_p}{\Delta t \ C_c}}$	$\sim 10^{-18}$
Stokes drag force	$\vec{F}_D = 3 \pi \mu_f d_p \vec{u}_r C_c^{-1}$	$\sim 10^{-18}$

$$\vec{F} = m \cdot \vec{a}$$

$$m_p \frac{d^2 \vec{x}}{dt^2} = \vec{\xi} \sqrt{\frac{6\pi\mu k_B T d_p}{\Delta t C_c}} + \frac{3\pi\mu_f d_p \vec{u}_r}{C_c}$$
Brownian force Stokes drag force

 ρ : densityT: temperature $\vec{\zeta}$: vector of random numbers $\vec{u_r}$: relative particle velocity \vec{x} : particle position d_p : particle diameter μ_f : fluid viscosity k_B : Bolzmann constant C_C : Cunningham slip corrector C_C : Cunningham slip corrector

Particle calculations

particle numbers	particle concentration $\left[\mathrm{cm}^{-3}\right]$
168000	1
1 680 000	11
$2 \ 520 \ 000$	17
3 700 000	25
$5\ 700\ 000$	38

- Comsol implemented generalized α -method
- Parametric sweep
- Total solving time: ~3 days

Simulation setup and results of particle calculations

Particle simulation

Particle simulation results

Thank you for your attention.

Birte Klug b.klug@rptu.de
Background

The solar system is full of dust

- collisions of asteroids
- sublimation of comets (dust-laden ice) orbiting the sun
 - dust trails
 - origin of meteor showers
- long-decayed cometary trails

(Plane, Chem. Soc. Rev., 2012, 41, 6507–6518)

What is the cosmic dust input to Earth's atmosphere?

https://www.deccanchronicle.com/lifestyle/pets-and-environment/140516/cosmic-dust-unveils-earth-s-ancient-atmosphere.html

Meteoric ablation

Interplanetary dust particles:

Peak ablation ~ 90 km

meteoric ablation

Meteoric Smoke Particles

(Plane, Chem. Soc. Rev., 2012, 41, 6507-6518)

https://www.iberdrola.com/innovation/meteorites-earth

Noctilucent Clouds (NLC)

Philipp Reutter, 05 Jul 2020, Sulzheim

Noctilucent Clouds (NLC)

Cirrus like structure 82 – 85 km

Polar summer mesopause

Ice particles

© Philipp Reutter

Philipp Reutter, 05 Jul 2020, Sulzheim

Do MSPs serve as ice nuclei for NLC?

© Philipp Reutter

Philipp Reutter, 05 Jul 2020, Sulzheim

Do MSPs serve as ice nuclei for NLC?

> AIM: Collection of mesospheric particles

> > Philipp Reutter, 05 Jul 2020, Sulzheim

© Philipp Reutter

https://socratic.org/questions/with-the-help-of-a-clear-illustration-explain-the-structure-of-the-atmosphere

https://socratic.org/questions/with-the-help-of-a-clear-illustration-explain-the-structure-of-the-atmosphere

The solar system is full of dust

What is the origin of cosmic dust?

The solar system is full of dust

Main sources of dust particles:

- collisions of asteroids
 sublimation of comets (dust-laden ice)
- orbiting the sun
 - dust trails
 - origin of meteor showers
- long-decayed cometary trails

(Plane, Chem. Soc. Rev., 2012, 41, 6507-6518)

Meteoric ablation

Flight path of the rocket

adopted from Naumann et al.; https://elib.dlr.de/140301/1/485_NAUMANN-DRESCHER.pdf

Flight path of the sounding rocket

adopted from Naumann et al.; https://elib.dlr.de/140301/1/485_NAUMANN-DRESCHER.pdf

Sounding rocket

adopted from Naumann, K., et al. "Design of a hovering sounding rocket stage for measurements in the high atmosphere." (2020)

Particle simulations

Particle simulations

Particle simulations

Temperature field in K depicted on a cut plane and particle trajectories

D_v: diffusion coefficient of water vapor in airp: pressurer: particle radius

 T_{air} : ambient temperature T_{ice} : surface temperature α_d : deposition coefficient *R_v*: water vapor gas constant*p*: pressure*r*: particle radius

 D_v : diffusion coefficient of water vapor in air p: pressure r: particle radius T_{air} : ambient temperature T_{ice} : surface temperature α_d : deposition coefficient *R_v*: water vapor gas constant*p*: pressure*r*: particle radius

R_v: water vapor gas constant*p*: pressure*r*: particle radius

D_v: diffusion coefficient of water vapor in airp: pressurer: particle radius

 T_{air} : ambient temperature T_{ice} : surface temperature α_d : deposition coefficient

 D_v : diffusion coefficient of water vapor in air p: pressure r: particle radius T_{air} : ambient temperature T_{ice} : surface temperature α_d : deposition coefficient *R_v*: water vapor gas constant*p*: pressure*r*: particle radius

Particle data

parameters	values	comments
ambient conditions		
μ_f	$8.99847 \cdot 10^{-6}$ Pa s	Dynamic viscosity of air at 85 km.
$ ho_f$	$2.6798 \cdot 10^{-5} \text{ kg m}^{-3}$	Air density, model variable for the current situation at 85 km altitude.
m_f	$2.43 \cdot 10^{-32} \text{ kg}$	Mass of fluid, displaced by a particle of $d_p = 1.2 \cdot 10^{-9}$ m.
$\frac{\partial u}{\partial y}$	$650 \ {\rm s}^{-1}$	Velocity gradient estimated from numerical simulations.
$\frac{\mathrm{d}(\vec{u}_f\!-\!\vec{v}_f)}{\mathrm{d}t}$	$1\cdot 10^7 \mathrm{~m~s^{-1}}$	Maximum relative particle acceleration
		(from numerical simulations for $\vec{u}_f = 300 \text{ m s}^{-1}$).
∇p	$1.05 \mathrm{Pa} \;\mathrm{m}^{-1}$	Pressure gradient (from numerical simulations).
k _B	$1.381 \cdot 10^{-23} \text{J K}^{-1}$	Boltzmann constant.
\vec{g}	$9.5 { m m s}^{-2}$	Gravitational acceleration coefficient at 85 km.
particle properties		
$\vec{u}_r = \vec{u}_f - \vec{v}_p$	$120 {\rm ~m~s^{-1}}$	Maximum relative particle velocity
		(from numerical simulations for $\vec{u}_f = 300 \text{ m s}^{-1}$).
$d_{p_{cd}}$	$100 \cdot 10^{-9}$ m Rapp and Thomas [2006]	Diameter of a single cloud droplet.
$ ho_{p_{cd}}$	$1000 {\rm ~kg} {\rm ~m}^{-3}$	Density of a cloud droplet.
$d_{p_{sn}}$	$1.2 \cdot 10^{-9}$ m [Hedin et al., 2014]	Diameter of a single sublimation nuclei.
$\rho_{p_{sn}}$	3000 kg m^{-3} [Hedin et al., 2007]	Density of a sublimation nuclei.
m_p	$2.7 \cdot 10^{-24} \text{ kg}$	Mass of a single particle for $d_p = 1.2 \cdot 10^{-9}$ m and $\rho = 3000$ kg m ⁻³ .
C_c	$7.357 \cdot 10^4$	Cunningham slip corrector for particles with $d_p = 1.2 \cdot 10^{-9}$ m.
simulation data		
Δt	$1 \cdot 10^{-5}$	Example time step taken by the solver.

Generalized alpha methode

GEL Projekt

Simulation einer **supersonischen Strömung** um eine Höhenforschungsrakete und die **Sammeleffizienz von mesosphärischen Partikeln** auf Impaktorflächen

Meteoroid \rightarrow Small (sub-km) rocky or metallic body in outer space.

Meteor → Light phenomenon ("shooting star" or "falling star"), visible passage of a frictionally heated and glowing body from outer space.

Meteorite \rightarrow Solid piece or debris from outer space which has survived the passage through the atmosphere and has hit the surface \rightarrow **Micrometeorite** if $D_p < 1$ mm.

forces and their relationship R		importance in reference to Stokes
to the Stokes drag force		drag force
pressure gradient force:	$R_p = \left \frac{\vec{F_p}}{\vec{F_D}} \right \sim \frac{d_p^2 \nabla p}{\vec{u_r}}$	Neglectable for nanometre-sizes
		of d_p and small pressure gradients
		around the particle.
gravitational force:	$R_{G,tot} = \left \frac{\vec{F}_g}{\vec{F}_D} \right \sim \frac{d_p^2}{\vec{u}_r}$	Neglectable for nanometre-sized particles.
Saffman force:	$R_L = \left \frac{\vec{F}_L}{\vec{F}_D} \right \sim d_p \sqrt{\frac{\vec{u}_r \times [\nabla \times \vec{u}_r]}{\vec{u}_r}}$	Neglectable for nano
		size particles or
		small relative velocities.
added mass force:	$R_{am} = \left \frac{\vec{F}_{am}}{\vec{F}_D} \right \sim d_p^2 \frac{\mathrm{d}(\vec{u}_f - \vec{v}_p)}{\mathrm{d}t}$	Small for very small particles and
		for a small relative acceleration of
		the particle.
Brownian force:	$R_{Brown} = \left \frac{\vec{F}_{Brown}}{\vec{F}_D} \right \sim \sqrt{\frac{1}{d_p \vec{u}_r^2}}$	Indispensable for nanometre-sized particles.

$$Ma = \frac{|v|}{c}, \qquad c = \sqrt{\gamma R_s T}, \qquad c_{85 \text{ km}} = 229 \frac{\text{m}}{\text{s}}$$
$$v_{\text{min}} = 300 \frac{\text{m}}{\text{s}}$$
$$v_{\text{max}} = 400 \frac{\text{m}}{\text{s}}$$

$$Ma_{\min} = 1.31$$

 $Ma_{\max} = 1.75$

 $e = c_v T,$

 $\rho = \frac{\rho}{\mathrm{R_s} T},$

velocity magnitude / m $\rm s^{-1}$

Ξ velocity magnitude /

GEL Projekt

Simulation einer supersonischen Strömung um eine Höhenforschungsrakete

