

2011

Structured Ultrasonic Metasurfaces

Raj C Thiagarajan, PhD ATOA Scientific Technologies Pvt Ltd



ATOA Scientific Technologies

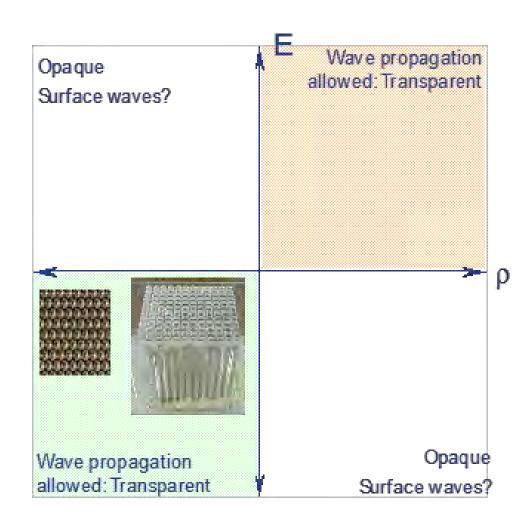
Engineering Simulation For Innovation

ATOAST

- We Provide Multiphysics Engineering Design Solutions
- Growing with Simulation based engineering Design
- Driven by Material Unity Vision
- We are the first COMSOL Certified Consultant from India
- ATOAST JOTHI foundation
 - www.atoastech.com

Engineering Design Simulations for the First time Right

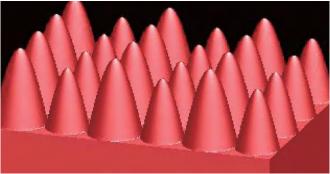
ENGINEERING	BIO	\wedge	TNFO	MEDICAL
Bridge	Plant leaf	Acomp.4	Internet	Human brain
Stiffness & Strength	Photo synthesis	Designed For	Information	Survival & Reproduction
Steel	Wood	Matarial	Silicon	Biomaterial
Fe, Ni, C	Mg, N, H,C		Si	H, O, N, C, S, P

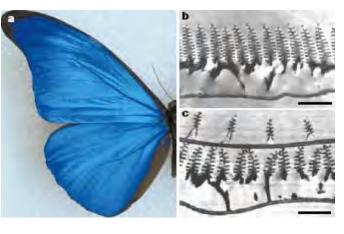

Structured Ultrasonic Metasurfaces

- Ultrasonic Metamaterials
- Nature inspired interface
- Industrial Applications
- COMSOL implementation
- Results and discussion

Ultrasonic Metamaterials

- Metamaterials with unusual properties.
- Acoustic Metamaterials
- Meta surfaces
 - 100% Transmission
 - 100% Reflection





Nature inspired interfaces

- Motheye
- Butterfly
- Sharkskin

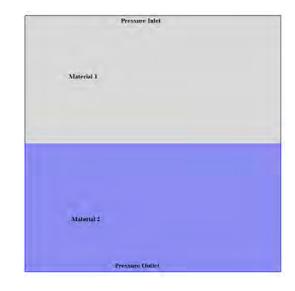
 Nature perfected the art of interface engineering for maximizing performance.

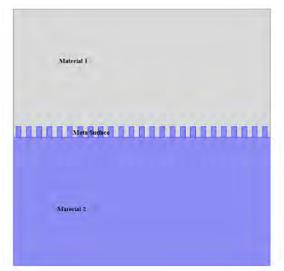
Applications

- Ultrasound scanning
- Therauptic ultrasound
- NDE inspection
- Acoustic barriers
- Drag reduction
- Dry adhesion,
- Self-cleaning,
- Drug Therapy.....

COMSOL Implementation

- Wave propagation
- Helmholtz equation

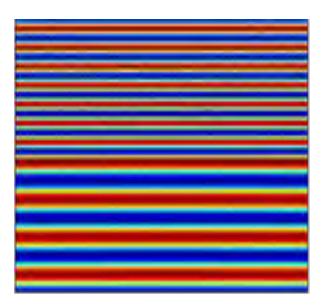

$$\frac{1}{\rho_0 c_s^2} \frac{\partial p}{\partial t^2} + \nabla \cdot \left(-\frac{1}{\rho_0} (\nabla p - \mathbf{q}) \right) = Q$$

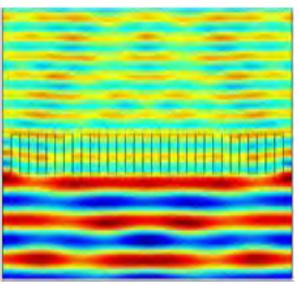

Transmission coefficient

•
$$T_c = \frac{P_{out}}{P_{in}}$$
 $P_{in} = \int_{\partial \Omega} \frac{p_0^2}{2\rho c_s} dA$ $P_{out} = \int_{\partial \Omega} \frac{|p_c|^2}{2\rho c_s} dA$

• Tc from impedance

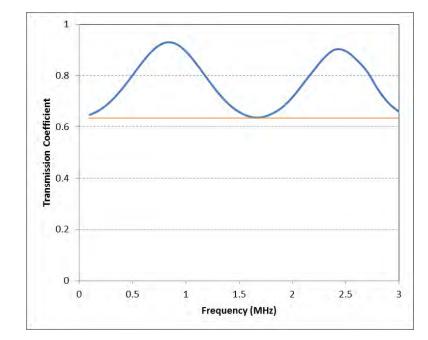
$$T_c = 1 - \left[\frac{Z_2 - Z_1}{Z_2 + Z_1} \right]^2$$

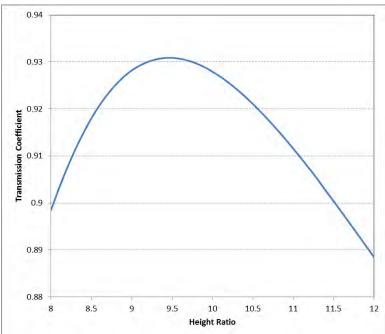




Results

- Pressure Distribution
- Ultrasonic wave propagation between two medium with
- a typical non engineered interface between two medium,
- an engineered and structured metasurfaces interface.




Results

Transmission
 coefficient of water
 polymer interface as a
 function of frequency

- 64% to 93%

 Transmission coefficients as function of engineered interface feature height.

Conclusions

- The standard interface shows a transmission coefficient of 0.64 for water polymer interface.
- The engineered interface shows as high as 0.93.
- The increase in transmission coefficient can be exploited for improvement in ultrasonic medical and industrial imaging applications.

