Galleria dei Modelli

La Galleria dei Modelli raccoglie un'ampia varietà di modelli realizzati con COMSOL Multiphysics in diversi ambiti applicativi, inclusi quelli elettrico, meccanico, fluidico e chimico. E' possibile scaricare i file .mph dei modelli pronti all'uso e le istruzioni step-by-step per costruirli, e utilizzarli come punto di partenza per le proprie simulazioni. Lo strumento di Ricerca Rapida permette di trovare i modelli che si riferiscono alla propria area di interesse. Per scaricare i file .mph dei modelli è necessario effettuare il login o creare un account COMSOL Access associato a un numero di licenza valido.

Image Import: Homogenized Pore Scale Flow and Thermal Conduction

You can now use image data to represent 2D material distributions or to identify regions with different materials by their color or gray scale. Images used in this way can have many origins such as scanning electron microscope (SEM), computed tomography (CT), or magnetic resonance imaging (MRI). An important application of image import is for easy computation of equivalent volume-averaged ...

How to Use Contour Line in Geometry

This presentation gives instructions on how to export a Contour Plot (single line), re-import it as an Interpolation Curve on a Work Plane in the Geometry, extrude the Work Plane, then Convert to Solid to create two domains separated by the new surface.

Tapered Cantilever with Two Load Cases

This example shows a 2D plane stress model of a thin tapered cantilever. Different boundary and load scenarios are examined. It is demonstrated how to apply and how to evaluate different load and constraint groups. Resulting stresses are compared to NAFEMS benchmark values and they are found to be in good agreement.

Stationary Incompressible Flow over a Backstep using Argyris Elements

This model examines the physics of plane, incompressible and steady flow over a backward step in the absence of external forces. It addresses a common benchmark problem in the field of computational fluid dynamics. There is no known exact solution, but experimental data have been published, making it possible to check the accuracy of the FEM solution. The model exemplifies a divergence-free ...

Thermal lensing in high-power laser focusing systems - new

Modern high-power industrial fiber laser systems can deliver up to 3kW of single-mode laser radiation on to surfaces to be cut, drilled, welded or marked. Even using highly transmissive materials, the optical component used to focus the laser beam on to target surfaces can be affected by the large amount of power carried by the light. As the laser beam pass through the optical components, ...

Connecting Shells and Beams

Many engineering structures consist of thin and slender components, where a full solid model will result in extremely many small elements. For such structures, it is much more efficient to use shell or beam elements. In this tutorial and verification model, it is shown how to connect beam and shell elements in different situations. The results are also compared to a solid model of the same ...

Diffraction Grating - new

This model uses the Wave Optics Module and the Ray Optics module to model the propagation of rays through a diffraction grating at different angles of incidence. It uses the S-parameters computed by the Electromagnetic Waves, Frequency Domain interface on a unit cell of the grating to specify the reflectivity and transmissivity of each diffraction order in the Geometrical Optics interface, ...

Mixed-Mode Debonding of a Laminated Composite

Interfacial failure by delamination or debonding can be simulated with a Cohesive Zone Model (CZM). This example shows the implementation of a CZM with a bilinear traction-separation law. It is used to predict the mixed-mode softening onset and delamination propagation in a composite material.

Electrocoating of a Car Door

This example models electrocoating of paint onto a car door in a time-dependent simulation. The deposited paint is highly resistive which results in lowered local deposition rates for coated areas. A primary current distribution in combination with a film resistance model is used to describe the charge transport in the electrolyte. The model is in 3D and uses an imported CAD geometry.

Transverse Modes for a Symmetric Laser Cavity

This model demonstrates how a nonlinear equation system can be setup to solve for the eigenfrequencies of a symmetric laser cavity. The model uses the bidirectional formulation of the Electromagnetic Waves, Beam Envelopes physics interface. The computed eigenfrequencies are verified with values from analytical expressions.

Quick Search