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Modeling of non-Newtonian blood flow
through a stenosed artery incorporating

fluid-structure interaction
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Abstract

We investigate fluid and structural responses to pulsatile non-
Newtonian blood flow through a stenosed artery, using ansys. The
artery was modeled as an axisymmetric stenosed vessel. The wall of
the vessel was set to be isotropic and elastic. The blood behavior was
described by the Power Law and the Carreau non-Newtonian models,
respectively. When compared to the Newtonian flow models, the re-
sult from the Carreau model showed very little difference, in terms of
velocity, pressure and wall shear stress, whereas the result from the
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Power Law model showed more significant vortices and smaller wall
shear stresses. The highest stress concentration was also found at the
throat of the stenosis.
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1 Introduction

A stenosed artery is the result of atherosclerosis, that is, the hardening of the
artery due to the growth of a calcified plaque layer on the inner walls of the
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artery. Numerous health complications caused by the disease have drawn a
significant research interest in the understanding of the cause of the disease
in order to develop effective methods to treat the disease.

The earliest research concentrated on the effects of stenosis shape and
severity [10] and the effects of transient conditions on the flow [3]. In these
early studies, the blood was assumed to be a Newtonian fluid, which is valid
for fluids with shear rates greater than 100 s−1. This situation only occurs
for a blood flow in large arteries [7]. Since blood flow in small arteries often
exhibits non-Newtonian characteristics, how these affect flow behavior has
attracted a considerable research interest. In order to determine the most
suitable model for simulating the changes of viscosity in blood steam, Cho
and Kensey [2] investigated several non-Newtonian models, including Power
Law and Carreau models, and compared their results with actual blood sam-
ples. Perktold et al. [8] found that the Power Law model demonstrated more
significant non-Newtonian influence. Most recently, Johnson and cowork-
ers [4] found that the Carreau model seemed to be far more suitable for
blood flow as the results from Carreau model agreed best with most of their
experimental data. They also found that the Carreau model did not over-
predict the fluid behaviour near the vessel wall for cases of high velocities
with a significant non-Newtonian impact on the flow.

Another recent development in this research field is the numerical simu-
lation of fluid-structure interaction (fsi) between a blood flow and diseased
arteries. This is of prime importance in predicting where arterial lesions are
most likely to occur, because they lead to health complications, such as heart
attack and stroke. Another health risk is that the stenosed arteries may col-
lapse due to a low pressure around the stenotic portion [11]. To understand
the occurrence of these phenomena, several studies were conducted to model
the stress and displacement distributions along the diseased artery wall. Lee
and Xu [5] modeled a Newtonian blood flow past an axisymmetric compliant
stenosis with sharp transitions and studied the impact of the flow on the
wall of the stenosed tube. The geometry of their model was similar to that
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used in the experiment work of Ojha et al. [6]. Tang et al. [11] also studied
the impact of a Newtonian flow on three-dimensional stenotic tubes with dif-
ferent degrees of severity for both axisymmetric and asymmetric conditions.
These studie made great contributions to the understanding of the complex
phenomena resulted by fsi.

However, there has been a lack of research, in the area of fsi modeling
of blood flows in small arteries, in which the non-Newtonian fluid effect can
not be ignored. Thus, the objective of this study is to numerically model
the interactions between a non-Newtonian fluid and a solid wall with a small
elastic deformation. This paper reports the results of fluid and structural
responses to a pulsatile non-Newtonian blood flow through an axisymmetric
stenosed vessel. Both Carreau and Power Law models were used to study
the effects of the non-Newtonian fluid on the artery wall and the elastic
deformation of the artery wall on the fluid. The wall stress distributions, fluid
velocity profile and wall shear stress were also quantified and are discussed
in detail.

2 Methods

2.1 Model description

This problem concerns an unsteady flow through a constricted (45% area
reduction) elastic tube similar to the case used by Lee and Xu [5]. Initially,
two cases were run to validate the geometry and fsi model - a Newtonian
pulsatile flow through a rigid wall and a Newtonian pulsatile flow through
an elastic wall. Then, these two cases were used to investigate a pulsatile
flow through elastic wall using the Carreau and Power Law non-Newtonian
models. The geometry of these models is shown in Figure 1, which consists
of a cylindrical tube with internal and external diameters of 5mm and 6mm
respectively.
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Figure 1: The geometry of the 45% axisymmetric stenosis used in all the
Newtonian and non-Newtonian simulations where L = 1.5mm and D =
5.0mm. The normalised distance from the centre of stenosis is Z = Z ′/D .
On the right is a cross-sectional view of the model from the end.

2.2 Governing equations

Adopting indicial notation (with the coordinate axes referred as xi, i =
1, 2, 3), the velocity of an fluid flow is denoted as ui, i = 1, 2, 3 . Accord-
ing to the conservations of mass and momentum, the governing equations
for an isotropic, incompressible fluid flow are the continuity equation and
momentum equations (ignoring the body forces):

∂ui

∂xi

= 0 ; (1)

∂ui

∂t
+

∂(uiuj)

∂xj

=
1

ρ

[
− ∂p

∂xi

+
∂τij

∂xj

]
, (2)

where p is the pressure, ρ is the density of the fluid, and the deviatoric stresses
that link to the deviatoric strain rates of the fluid are

τij = 2µ

(
ε̇ij −

1

3
δij ε̇kk

)
, (3)
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where the quantity in the brackets is the deviatoric strain rate, δij is the
Kronecker delta, a repeated index implies summation over the range of index,
and

ε̇ij =
1

2

[
∂ui

∂xj

+
∂uj

∂xi

]
. (4)

For a non-Newtonian fluid flow, the non-linear relation between the stress
and strain rate is observed with a coefficient µ depending on strain rates as
discussed in Section 2.4.

The motion of an elastic solid is governed by

ρw
∂2di

∂t2
=

∂σij

∂xj

, (5)

where di and σij are the displacements and stresses of the solid, respectively;
and ρw is the density of the solid wall. The stress tensor σij is obtained from
the constitutive equation of the material, and for a Hookean elastic solid is

σij = λLekkδij + 2µLeij , (6)

where λL and µL are the Lame constants, and eij are the strain in the solid.

These equations were solved using flotran and ansys codes available
within ansys/Multiphysics.

2.3 Flow conditions and model settings

For the preliminary Newtonian models, pulsatile flow was specified at the
inlet as a sinusoidal volumetric flow waveform of 4.3 ± 2.6ml with a pe-
riod tp = 345ms. The fluid has a density of 755 kgm−3 and a Newtonian
viscosity of 0.00143N sm−2. giving the maximum and minimum Reynolds
number Re to be 930 and 230, respectively. Because of the low Re and mild
stenosis the flow is laminar and we assume axisymmetry. For these models
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a fully developed axial velocity profile calculated from the time dependent
flow rate was specified at the inlet and a constant pressure of 4140Pa was
specified for the outlet boundary.

For the fsi model, the stenotic wall was considered to be incompressible,
isotropic and linearly elastic, with a Young’s modulus of 500 kPa, a Poisson
ratio of 0.499, and a density of 1000 kg/m3.

2.4 Non-Newtonian models

Two non-Newtonian models were used to obtain the fluid viscosity, µ, from
the strain, γ̇, which is the second invariant of the deviatoric strain rate tensor
of Equation (4). In these models, the fluid density was set as 1050 kg/m3,
the inlet velocity profile was set to be uniform, given in Poise P (1P =
0.1Ns/m2) [4]. The two non-Newtonian models are the

Carreau model, µ = µ∞ + (µ0 − µ∞)
[
1 + (λγ̇)2

](n−1)/2
, (7)

where time is constant, λ = 3.313 s, zero strain viscosity µ0 = 0.56P, infinite
strain viscosity µ∞ = 0.0345P, empirical exponent n = 0.3568 ; and the

Power Law model, µ = µ0(γ̇)n−1 , (8)

where nominal viscosity µ0 = 0.35 and empirical exponent n = 0.6 .

For comparison, a fsi Newtonian model was run with the same density
and inlet conditions. The viscosity was set to be 0.0345P (infinite strain
viscosity).

2.5 Computational details

The 45% area reduction in the stenosed tube was modeled to be axisymmet-
ric and the flow is likewise assumed to behave as such. As in the case of
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Lee and Xu [5], the pre- and post-stenotic regions were chosen to be 3 and
10 diameters (that is, 15mm and 50mm) long respectively. Several grid
densities were tested to determine the optimum computational settings, all
using quadrilateral structured elements. There was no notable change be-
tween these different refinements. A 25× 325 mesh density was used for the
fluid with 12 elements for the solid radial thickness, as shown in Figure 3.

For this study, 69 time steps per cycle were chosen. The simplef velocity-
pressure coupling was specified for the flotran solver. The convergence
criteria for all the fluid variables were 10−5. For the fsi coupling, the con-
vergence criterion for the maximum difference in wall displacement was set
to a tolerance of 0.1% of the diameter.

The fsi coupling method employed in this study consists of an iterative
scheme, whereby the fluid model is first solved and the fluid pressures are
applied on the inner wall and deformed while solving the solid model, which
is then used to update the coordinates of the corresponding nodes. This is
repeated until the convergence is achieved on nodal displacements.

3 Results

The results for the fluid and solid properties, for example, velocity distribu-
tions, wall shear stress, pressure, wall stress and displacements, are presented
at selected time frames. The parameter t/tp used to describe a particular time
in a cycle is similar to that used by Lee and Xu, where t is the time in seconds
and the period of the cycle tp = 0.345 s.

Lee and Xu [5] compared their flow model with experimental data ob-
tained by Ojha et al. [6] at three different locations in the post-stenotic
region: Z ′ = 1 , Z ′ = 2.5 and Z ′ = 4.3 , where Z ′ is the normalised distance
from the centre of the stenosis; that is, Z ′ = z/D , and z is the axial distance
away from the centre of the stenosis and D is the inlet diameter of the tube
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(Figure 1). The flow waveform specified at the model inlet is similar to Lee
and Xu’s case [5], which has a time-shift of 0.123 s with the experiment by
Ojha et al. [6].

3.1 Validation of rigid and FSI Newtonian
simulations

To validate the model and methods employed in this study, a comparison
with the studies by Lee and Xu [5] and Ballyk et al. [1] was conducted [9].
Good agreement with the numerical and experimental studies was found. We
concluded that incorporating fsi into the simulation increased the flow cross-
sectional area in the non-stenosed regions, resulting in reducing the velocity
profile and increasing the flow recirculation effects: the wall shear stress was
decreased in the fsi model compared to the rigid model; the maximum stress
was found at the shoulder of the stenosis.

3.2 FSI results

3.2.1 Axial velocity profile

Figure 2 shows that the Carreau model velocity profiles mostly follow the
profiles of the Newtonian except for flow at a slightly slower velocity. Close
to the centreline, the velocity of the Carreau model noticeably drops further,
and this effect is more apparent further downstream from the stenosis. We
attribute this fluid behavior to the higher viscosity of the fluid, particularly
close to the centreline region where the shear rate is lowest.

The velocity profiles for the Power Law model show a marked decrease
in centreline axial velocities in comparison to the Newtonian model. Due to
a steeper change in the viscosity near the artery wall, the boundary layer
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Figure 2: Comparison of axial velocity profiles between the Carreau, Power
Law and Newtonian fsi models at Z ′ = 1 and Z ′ = 4.3 .

thickness is much thinner than for the other models, which causes a flatter
profile and a lower centreline axial velocity. The largest difference in cen-
treline axial velocities occurs at the peak of the acceleration phase which
gradually decreases during the deceleration phase reaching the minimum.
The recirculation zone was slightly less prominent for the Power Law model.

3.2.2 Wall shear stress

The wall shear stress (wss) for the Carreau model (Figure 3) shows the
four transitional points and characteristic peaks and troughs noted by Lee
and Xu [5]. The Carreau model indicated slightly higher wss distributions
than the Newtonian model due to the higher viscosity near the walls. This
observation is consistent with results of Johnston et al. [4] who noted this
wss behavior for the Carreau model.
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The wall shear stress for the Power Law model has similar peaks and
troughs as shown in the Carreau model. However, the overall wss is signif-
icantly lower than the other models. This result is supported by Johnston
et al. [4] who noted that at high centreline velocities, the Power Law model
tends to have much lower wss than other models.

3.2.3 Stress and displacement

The stress distribution (Figure 4) for this model remains similar through-
out the flow cycle as the pressure has little variation over the cycle and the
dominance of the singularity points. Therefore contours at only one time
are presented. From the stress contours, the highest stress is the axial stress
and occurs on the shoulders of the stenosis, particularly downstream where
the bending effect is significant. The relatively sharp corner of the bend con-
tributes to a stress concentration due to solution singularity. Circumferential
stress magnitudes are close to the value for the axial stresses but are due to
the constraints imposed by the axisymmetric condition. Radial stresses are
not as significant and are less likely to cause surface rupture.

Due to the similar magnitudes in pressure, the stress distributions for the
Power Law model have the same distribution as the Carreau model over time,
having the highest stress at the shoulder of the stenosis. However, it is noted
that the Power Law stress distributions have a slightly smaller magnitude
than the Carreau and Newtonian values.

3.2.4 Non-Newtonian importance factor

One method to determine the effect of the non-Newtonian model, proposed
by Johnston et al. [4], is the importance factor IL which is derived from the
concept introduced by Ballyk et al. [1] who defined this as IL = µ̄eff/µ∞
where µ̄eff is the effective viscosity characteristic of a particular flow and
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Figure 3: wss distribution along the axial distance for the Carreau, Power
Law and Newtonian fsi models at t/tp = 0.25

Figure 4: Stress contour distributions of the vessel wall at the stenosed
region for the Carreau fsi model in the (a) axial, and (b) circumferential di-
rections and the Power Law fsi model in the (c) axial, and (d) circumferential
directions at t/tp = 0.25 .
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Table 1: Importance factors for both the Careau and Power Law fsi models.
The two areas of interest used to derive these values are the entire flow region
and the region immediately on the vessel wall.

Careau Power Law
t
tp

V [m s−1] Whole model Wall only Whole model Wall only

0.25 0.345 1.74652 0.80036 2.71559 2.94888
0.5 0.219 1.45356 2.16144 2.30512 11.5215
0.75 0.087 1.22014 2.34278 2.18004 9.62648
1.0 0.219 1.28388 0.63324 2.26387 2.78711

µ∞ = 0.00345Nm s−1 is the Newtonian value for viscosity. Clearly, IL = 1
indicates Newtonian flow and deviations from unity indicate regions of non-
Newtonian flow. Johnston et al. improved on this concept by calculating an
average of these importance values that would be more representative of the
actual flow in the artery. Instead of simply averaging IL, they averaged the
relative difference of each value of viscosity from the Newtonian value that
is then expressed as a percentage. This global non-Newtonian importance
factor

IG =
100

N

[
∑

N(µ− µ∞)2]
1/2

µ∞
. (9)

This equation is evaluated at each of the N nodes on the area of interest with
µ as the viscosity, µ∞ = 0.00345Nm s−1. For the non-Newtonian simulations,
the global importance factor is tabulated in Table 1.

Considering the whole model, both the Carreau model and the Power Law
model indicate an extremely high IG at t/tp = 0.25 , the peak of the fluid
flow. This value decreases as the flow decelerates to the point of its minimum,
after which the IG picks up again when the flow accelerates. Between the
Power Law and Carreau model, it seems that the Power Law model has larger
deviations from the Newtonian viscosity due to the nature of the equation
that has a steeper strain-viscosity relation. This occurrence has been noted
by Johnston et al. [4]. Considering the whole model, both the Carreau model
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and the Power Law model indicate an extremely high IG at t/tp = 0.25 , the
peak of the fluid flow. This value is seen to decrease as the flow decelerates to
the point of minimum flow, after which, the IG picks up again when the flow
accelerates. Between the Power Law and Carreau model, it would seem that
the Power Law model has larger deviations from the Newtonian viscosity
due to the nature of the equation that has a steeper strain-viscosity relation.
This occurrence has been noted by Johnston et al. [4]. It appears that the
Carreau model provides reasonable IG values without being too excessive.
Note: despite having similar velocities at t/tp = 0.5 and t/tp = 1.0 , the IG

differs at these times. This indicates that the temporal nature of the flow
can affect the impact the non-Newtonian model has on the flow and that this
impact is larger during flow deceleration where the recirculation zone is seen
to grow. It appears that the Carreau model provides reasonable IG values
without being too excessive. Also note that despite having similar velocities
at t/tp = 0.5 and t/tp = 1.0 , the IG differs at these times. This indicates
that the temporal nature of the flow can affect the impact the non-Newtonian
model has on the flow and that this impact is larger during flow deceleration
where the recirculation zone is seen to grow.

When comparing the wall-only IG to the entire model, the wall-only values
were significantly higher and independent of the flow. The wall-only values
during the deceleration phase are three times higher than the values during
the acceleration phase due to the significant viscosity changes about this
region.

4 Conclusion

From the results of the Newtonian fsi and rigid simulation, the model used
is sufficiently accurate. These results show that having a compliant model
has a slight effect on the flow properties due to the enlargement of the flow
cross-sectional area that causes a reduction in the flow. The models showed
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different wss peak magnitudes, but the overall shape of the distribution
remained similar.

The Carreau model showed only slightly smaller centreline axial velocities
whereas the Power Law model showed more significant differences, includ-
ing flatter velocity profiles. This was due to the higher viscosity about the
axis of symmetry, particularly for the Power Law model. The wss distribu-
tions show similar trends except the Power Law model shows significantly
smaller magnitudes. Both models show similar stress distributions although
the Carreau exhibits slightly larger stresses.

The values of importance factors indicate the impact of the non-Newtonian
fluid in various flow regions. Transient effects are apparent in the val-
ues. There is a marked decrease in importance factors during the decel-
eration phase. The wall-only importance factors indicate a significant non-
Newtonian effect.

Though the Power Law model shows more dominant non-Newtonian ef-
fects, it may produce excessive values, according to literature. Further ex-
perimental work is recommended to determine which model is more suitable
for this type of simulation.
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